
Hemicellulose forms pseudo-lignin during biomass pretreatment

Top: Time course for structural features in DAP treated biomass observed during TR-SANS. *Bottom left*: SANS reaction cell. *Bottom right*: Plot shows time/temperature dependent formation of lignin and pseudo-lignin particles observed by SANS

Yang, et al., ACS Sustainable Chem. Eng. (2021) **10**, 314-322. https://doi.org/10.1021/acssuschemeng.1c06276

This work is supported by DOE Office of Science, Office of Biological and Environmental Research (ERKP291,ERKP752), It used neutron scattering resources at the High Flux Isotope Reactor, a DOE Office of Science, Scientific User Facility operated by the Oak Ridge National Laboratory.

Scientific Achievement

First direct evidence that supports the formation of pseudolignin aggregates from hemicellulose during thermochemical pretreatment.

Significance and Impact

Lignin aggregates formed during dilute acid pretreatment of biomass are known to contribute to lower sugar yields for biofuel production. This work provides evidence that formation of pseudo-lignin from hemicellulose also contributes to decreased enzyme accessibility and biomass recalcitrance.

Research Details

- Structural changes in switchgrass (native and extractives) during DAP were measured using time-resolved small-angle neutron scattering (TR-SANS).
- Hemicellulose (red) forms pseudo-lignin aggregates between 80-130°C.
- Lignin (blue) aggregates form at 130°C and higher temperatures.

SCIENTIFIC Visualization of Solvent Disruption of Biomass and Biomembrane Structures in the Production of Advanced Biofuels and Bioproducts